
@crichardson

Developing event-driven
microservices with event

sourcing and CQRS
Chris Richardson

Author of POJOs in Action
Founder of the original CloudFoundry.com

 @crichardson
chris@chrisrichardson.net
http://plainoldobjects.com
http://microservices.io

@crichardson

Presentation goal

Show how Event Sourcing and
Command Query Responsibility Segregation

(CQRS)
are a great way to implement microservices

@crichardson

About Chris

@crichardson

About Chris

Founder of a startup that’s creating a platform for developing
event-driven microservices: http://eventuate.io/

Consultant helping organizations improve how they architect
and deploy applications using cloud, micro services, polyglot
applications, NoSQL, ...

Creator of http://microservices.io

@crichardson

For more information

http://microservices.io

http://github.com/cer/microservices-examples

https://github.com/cer/event-sourcing-examples

http://plainoldobjects.com/

https://twitter.com/crichardson

@crichardson

Agenda

Why build event-driven microservices?

Overview of event sourcing

Designing microservices with event sourcing

Implementing queries in an event sourced application

@crichardson

Tomcat

Traditional monolithic
architecture

Browser/
Client

WAR/EAR

RDBMS

Customers

Accounts

Transfers

Banking UI

develop
test

deploy

Simple

Load
balancer

scale

Spring MVC

Spring
Hibernate

...

HTML

REST/JSON

ACID

@crichardson

But large and/or complex
monolithic applications

=
Trouble!

@crichardson

Apply the scale cube

X axis
- horizontal duplication

Z ax
is

- d
ata

 pa
rtit

ion
ing

Y axis -
functional

decomposition

Sca
le b

y s
plit

tin
g s

im
ilar

thi
ng

s

Scale by
splitting

different things

@crichardson

Today: use a microservice, polyglot
architecture

Banking UI

Account Management Service MoneyTransfer Management
Service

Account
Database MoneyTransfer Database

Standalone
services

Sharded SQLNoSQL DB

@crichardson

But this results in distributed
data management problems

@crichardson

Example: Money transfer

Account Management
Service

MoneyTransfer
Management Service

Account
Database

MoneyTransfer
Database

Account #1 Money Transfer

Account #2

No
ACID

No 2PC

@crichardson

Use an event-driven
Services publish events when state changes

Services subscribe to events and update their
state

Maintain eventual consistency across multiple
aggregates (in multiple datastores)

Synchronize replicated data

@crichardson

MoneyTransferService
MoneyTransfer

fromAccountId = 101
toAccountId = 202
amount = 55
state = INITIAL

MoneyTransfer
fromAccountId = 101
toAccountId = 202
amount = 55
state = DEBITED

MoneyTransfer
fromAccountId = 101
toAccountId = 202
amount = 55
state = COMPLETED

Eventually consistent money transfer

Message Bus

AccountService

transferMoney()

Publishes:
Subscribes to:

Subscribes to:

publishes:

MoneyTransferCreatedEvent

AccountDebitedEvent

DebitRecordedEvent

AccountCreditedEvent
MoneyTransferCreatedEvent

DebitRecordedEvent

AccountDebitedEvent
AccountCreditedEvent

Account
id = 101
balance = 250

Account
id = 202
balance = 125

Account
id = 101
balance = 195

Account
id = 202
balance = 180

@crichardson

How to
atomically
update state

and
publish an event

@crichardson

Update and publish using
2PC

Guaranteed atomicity BUT

Need a distributed transaction manager

Database and message broker must support 2PC

Impacts reliability

Not fashionable

2PC is best avoided

@crichardson

Use data store as message
queue

Use datastore as a message queue

Txn #1: Update database: new entity state & event

Txn #2: Consume event

Txn #3: Mark event as consumed

Eventually consistent mechanism (used by eBay)

See BASE: An Acid Alternative, http://bit.ly/ebaybase

BUT

Tangled business logic and event publishing code

Difficult to implement when using a NoSQL database :-(

@crichardson

Agenda

Why build event-driven microservices?

Overview of event sourcing

Designing microservices with event sourcing

Implementing queries in an event sourced application

@crichardson

Event sourcing
For each aggregate in your domain model:

Identify (state-changing) domain events

Define Event classes

For example,

Account: AccountOpenedEvent, AccountDebitedEvent,
AccountCreditedEvent

ShoppingCart: ItemAddedEvent, ItemRemovedEvent,
OrderPlacedEvent

@crichardson

Persists events
NOT current state

Account

balance

open(initial)
debit(amount)
credit(amount)

AccountOpened

Event table

AccountCredited

AccountDebited

101 450

Account tableX
101

101

101

901

902

903

500

250

300

@crichardson

Replay events to recreate
state

Account

balance

AccountOpenedEvent(balance)
AccountDebitedEvent(amount)
AccountCreditedEvent(amount)

Events

@crichardson

Before: update state + publish
events

Two actions that must be atomic

Single action that can
be done atomically

Now: persist (and publish)
events

@crichardson

Request handling in an event-sourced application

HTTP
Handler

Event
Store

pastEvents = findEvents(entityId)

Account

new()

applyEvents(pastEvents)

newEvents = processCmd(SomeCmd)

saveEvents(newEvents)

Microservice A

@crichardson

Event Store publishes events -
consumed by other services

Event
Store

Event
Subscriber

subscribe(EventTypes)

publish(event)

publish(event)

Aggregate

NoSQL
materialized

view

update()

update()

Microservice B

@crichardson

Event store implementations

Home-grown/DIY

geteventstore.com by Greg Young

My event store - http://bit.ly/trialeventuate

@crichardson

Optimizing using snapshots

Most aggregates have relatively few events

BUT consider a 10-year old Account ⇒ many transactions

Therefore, use snapshots:

Periodically save snapshot of aggregate state

Typically serialize a memento of the aggregate

Load latest snapshot + subsequent events

@crichardson

Hybrid OO/Functional style
example aggregate

@crichardson

OO = State + Behavior

balance

Account

processCommand(cmd : Command) : Seq[Events]

applyEvent(event : Event) : Account

State

Behavior

@crichardson

Aggregate traits

Map Command to Events

Apply event returning
updated Aggregate

Used by Event Store
to reconstitute

aggregate

@crichardson

Account - command processing

Prevent
overdraft

@crichardson

Account - applying events
Immutable

@crichardson

Event Store API

Reactive/Async API

@crichardson

Functional example aggregate

@crichardson

FP = Separation of State and
Behavior

Account

balance

AccountAggregate

processCommand(Account, Command) : Seq[Events]

applyEvent(Account, Event) : Account

State Behavior

@crichardson

Aggregate type classes/implicits

@crichardson

Functional-style
MoneyTransfer Aggregate

State Behavior

@crichardson

FP-style event store
Enables inference of T, and EV

Tells ES how to instantiate
aggregate and apply events

@crichardson

Business benefits of event
sourcing

Built-in, reliable audit log

Enables temporal queries

Publishes events needed by big data/predictive analytics etc.

Preserved history ⇒ More easily implement future
requirements

@crichardson

Technical benefits of event
sourcing

Solves data consistency issues in a Microservice/NoSQL-
based architecture:

Atomically save and publish events

Event subscribers update other aggregates ensuring
eventual consistency

Event subscribers update materialized views in SQL and
NoSQL databases (more on that later)

Eliminates O/R mapping problem

@crichardson

Drawbacks of event sourcing

Weird and unfamiliar

Events = a historical record of your bad design decisions

Handling duplicate events can be tricky

Application must handle eventually consistent data

Event store only directly supports PK-based lookup (more on
that later)

@crichardson

Agenda

Why build event-driven microservices?

Overview of event sourcing

Designing microservices with event sourcing

Implementing queries in an event sourced application

@crichardson

Use the familiar building
blocks of DDD

Entity
Value object
Services
Repositories
Aggregates

With some
differences

@crichardson

Partition a
bounded context’s

domain model
into Aggregates

Aggregate design
Graph consisting of a root
entity and one or more other
entities and value objects

Each core business entity =
Aggregate: e.g. customer,
Account, Order, Product, ….

Reference other aggregate
roots via primary key

Often contains partial copy
of other aggregates’ data

Order

OrderLine
Item

quantity
productId
productName
productPrice

customerId

Address

street
city
…

@crichardson

Aggregate granularity is
important

Transaction = processing one command by one aggregate

No opportunity to update multiple aggregates within a transaction

If an update must be atomic (i.e. no compensating transaction)
then it must be handled by a single aggregate

e.g. scanning boarding pass at security checkpoint or when
entering jetway

@crichardson

Aggregate granularity

Forum

Post

User

moderator

author

Forum

Post

User

moderator

author

Forum

Post

User

moderator

author

Consistency Scalability/
User experience

@crichardson

Identify the state changing
events for each Aggregate

@crichardson

Designing domain events
Naming

Past tense to reflect that something occurred

Ideally specific: AccountOpened/Debited/Credited

Sometimes vague: FooUpdated

Event attributes

Id - TimeUUID

Other attributes - from command, required to persist entity

Event enrichment

ProductAddedToCart(productId) vs. ProductAddedCart(productInfo)

Extra data to support event consumers

@crichardson

The anatomy of a microservice

Event Store

HTTP Request

HTTP Adapter

Event Adapter

Cmd

Cmd

Events
Events

Xyz Adapter

Xyz Request

microservice

Aggregate

@crichardson

Asynchronous Spring MVC
controller

Scala Future => Spring MVC DeferredResult

@crichardson

MoneyTransferService

DSL concisely specifies:
1.Creates MoneyTransfer aggregate
2.Processes command
3.Applies events
4.Persists events

@crichardson

Handling events published by
Accounts

1.Load MoneyTransfer aggregate
2.Processes command
3.Applies events
4.Persists events

@crichardson

Agenda

Why build event-driven microservices?

Overview of event sourcing

Designing microservices with event sourcing

Implementing queries in an event sourced application

@crichardson

Let’s imagine that you want to
display an account and it’s
recent transactions...

@crichardson

Displaying balance + recent
credits and debits

We need to do a “join: between the Account and the
corresponding MoneyTransfers

(Assuming Debit/Credit events don’t include other account, ...)

BUT
Event Store = primary key lookup of individual aggregates, ...

⇒
Use Command Query Responsibility Segregation

@crichardson

Command Query Responsibility
Segregation (CQRS)

Command-side

Commands

Aggregate

Event Store

Events

Query-side

Queries

(Denormalized)
View

Events

@crichardson

Query-side microservices

Event Store

Updater - microservice

View Updater
Service

Events
Reader - microservice

HTTP GET
Request

View Query
Service

View
Store

e.g.
MongoDB

Neo4J
CloudSearch

update query

@crichardson

Persisting account balance and
recent transactions in MongoDB

{
 id: "298993498",
 balance: 100000,
 transfers : [

{"transferId" : "4552840948484",
 "fromAccountId" : 298993498,
 "toAccountId" : 3483948934,
 "amount" : 5000}, ...

],
 changes: [
 {"changeId" : "93843948934",
 "transferId" : "4552840948484",
 "transactionType" : "AccountDebited",
 "amount" : 5000}, ...
]
}

Denormalized = efficient lookup

MoneyTransfers that
update the account

The debits and credits

Current
balance

@crichardson

Persisting account info using
MongoDB...

class AccountInfoUpdateService
 (accountInfoRepository : AccountInfoRepository, mongoTemplate : MongoTemplate)
 extends CompoundEventHandler {

 @EventHandlerMethod
 def created(de: DispatchedEvent[AccountOpenedEvent]) = …

 @EventHandlerMethod
 def recordDebit(de: DispatchedEvent[AccountDebitedEvent]) = …

 @EventHandlerMethod
 def recordCredit(de: DispatchedEvent[AccountCreditedEvent]) = …

 @EventHandlerMethod
 def recordTransfer(de: DispatchedEvent[MoneyTransferCreatedEvent]) = …

}

@crichardson

Persisting account info using
NodeJS and MongoDB...

 this.handlers[accountEvents.entityTypeName][accountEvents.AccountOpenedEvent] =
 function (event, callback){
 accountViewUpdaterService.createAccount(event, callback)
 };

 this.handlers[accountEvents.entityTypeName][accountEvents.AccountDebitedEvent] =
 function (event, callback) {
 accountViewUpdaterService.saveAccountChange(event, -1, callback);
 };

exports.saveAccountChange = function(event, delta, callback){
…
 var update = {
 $inc: { balance: amount * delta },
 $push: { changes: ci },
 $set: { version: changeId }
 };

 var options = { multi: true };

 db.AccountModel.update(conditions, update, options, callback);
};

Other kinds of views
AWS Cloud Search

Text search as-a-Service

View updater batches
aggregates to index

View query service does
text search

AWS DynamoDB

NoSQL as-a-Service

On-demand scalable -
specify desired read/write
capacity

Document and key-value
data models

Useful for denormalized,
UI oriented views

Benefits and drawbacks of
CQRS

Benefits

Necessary in an event-sourced
architecture

Separation of concerns =
simpler command and query
models

Supports multiple denormalized
views

Improved scalability and
performance

Drawbacks

Complexity

Potential code duplication

Replication lag/eventually
consistent views

@crichardson

Summary

Event sourcing solves key data consistency issues with:

Microservices

Partitioned SQL/NoSQL databases

Apply strategic DDD to identify microservices

Apply tactical DDD to design individual services

Use CQRS to implement materialized views for queries

@crichardson

@crichardson chris@chrisrichardson.net

http://plainoldobjects.com http://microservices.io

